Mathematical modelling of lymphopenia induced proliferation*

Daniel Commenges¹ Andrew Yates⁴ Robin Callard³ Andrey Shuvaev¹ Thea Hogan^{2,3} Ben Seddon² Rodolphe Thiébaut¹

1. INSERM U897, Bordeaux, France; 2. MRC National Institute for Medical Research, UK; 3. UCL Institute of Child Health, UK; 4. Albert Einstein Institute, NY *RHOMEO project - ANR/BBSRC 07 BSYS 007 (http://etudes.isped.u-bordeaux2.fr/rhomeo/)

Objectives

Biological background See poster "A combined mathematical modelling and experimental investigation of naïve T-lymphocyte homeostasis", Thea Hogan et al.

- To estimate parameters of mathematical models (Smith-Martin and Gett-Hodgkin) for fitting the CFSE data
- To compare mathematical models
- Data: F5 and OT-1 cells transferred into lymphopenic Rag1 $^{-/-}$ transgenic mice (2-3 mice per sampling time, 5-9 sampling times per experiment, 2 experiments by type of cells).

Mathematical models

Smith-Martin approach [1] assumes that each cell cycle (i) separated in two parts: A-state, which approximately corresponds to G_1 phase, with stochastic duration and B-phase, which duration corresponds to the rest phases of the cell cycle, with fixed duration Δ_{SM} .

$$\dot{A}_{i}(t) = 2\lambda \cdot e^{-\delta_{B} \cdot \Delta_{SM}} \cdot A_{i-1}(t - \Delta_{SM}) - (\lambda + \delta_{A})A_{i}(t) \qquad \{A_{0}(t = T) = N_{0}\}$$

$$B_{i}(t) = \int_{0}^{\Delta_{SM}} \lambda A_{i}(t - s)e^{-\delta_{B} \cdot s}$$

$$p_{i}(t) = \frac{2^{-i}(A_{i}(t) + B_{i}(t))}{\sum_{i} 2^{-i}(A_{i}(t) + B_{i}(t))}$$

We used 3 types of dependence of λ : $\lambda = const$, $\lambda = \lambda_0 \cdot e^{-\mu \cdot t}$, $\lambda = \lambda_0 \cdot e^{-\mu \cdot i}$. $\delta_A = \delta_B = \delta_0 \cdot \ln(1 + \delta \cdot i), \{\delta_0 = 1\}.$

Parameters:

 λ – rate of transfer from A-state to B-phase.

 Δ_{SM} – duration of B-phase.

T – time, when cells are triggered to divi-

 μ – progressive reduction in division rate.

Methods of parameters estimation $\left(\vec{\theta} = \lambda_0, \Delta_{SM}, T, \mu\right)$ or $\left(\vec{\theta} = \alpha, \beta, \Delta_{GH}, T\right)$ Minimization of weighted sums of squared residuals:

$$WSSR = \sum_{i,j,k} \frac{(p_i(t_k; \vec{\theta}) - f_{ij}(t_k))^2}{SD_{ij}(t_k)^2}$$

Smith-Martin model

Gett-Hodgkin approach [2] assumes that the first division after stimulation for division (in time T) occurs in time t_{div1} with duration and distributed according to some given law $\phi(\alpha, \beta; s)$ (we used Weibul, Gamma and Log-Normal for comparison). All remain divisions (i) occurs within the fixed time Δ_{GH} .

$$p_{i=0}(t) = 1 - \int_0^{t-T} \phi(\alpha, \beta; s) ds$$

$$p_{i>0}(t) = \int_{t-T-i\Delta_{GH}}^{t-T-(i-1)\Delta_{GH}} \phi(\alpha, \beta; s) ds$$

 α and β are scale and shape parameters respectively.

Parameters:

 α, β – scale and shape parameters of distribution of time to first division.

 Δ_{GH} – duration of all division after the

T – time, when cells are triggered to division.

 $p_i(t_k; \vec{\theta})$ - frequencies of precursors with parameters vector $\vec{\theta}$, calculated from the model, $f_{ij}(t_k)$ - observed frequencies. Summation over all divisions (i), mice (j) and sampling times (t_k) . A standard deviation SDover all mice in a given sampling time and given number of divisions was used for measurement error function. For calculation of CIs bootsraping was used.

Gett-Hodgkin model

Results

Parameters of both models (Smith-Martin and Gett-Hodgkin) were estimated using the experimental data, obtained by Hogan et al. (see poster "A combined mathematical modelling and experimental investigation of naïve T-lymphocyte homeostasis").

The best fit was obtained: for Smith-Martin model for the case $\lambda = \lambda_0 e^{-\mu \cdot t}$ with cell death; for Gett-Hodgkin model for the Weibull distribution.

	Should Martin House	
	$oxed{ ext{Receptor} \lambda_0 [day^{-1}] \Delta [day] T [day]} \delta \mu [day^{-1}] ext{AIC}}$	$oxed{ ext{Receptor} oxedskip \Delta \ [day] \ T \ [day] \ T_{d1} \ [day](lpha) \ SD_{d1} \ [day](eta) \ AIC}$
	OT-1 4.428 0.287 1.402 0 0.425 241	OT-1 1.582 0.078 5.121 (2.922) 1.906 (5.741) 771
	F5 1.895 0.529 4.610 0.006 0.240 109	F5 5.263 0.035 8.177 (2.040) 4.199 (9.230) 621
OT-1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
F5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	8 12 0.30 0.25 0.20 0.15 0.10	8 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.1 0.0 0.1 0.2 0.1 0.0 0.1 0.1 0.2 0.1 0.3 0.2 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1

177 (2.040) 4.199 (9.230) 621

Notes: 1. Numbers on the top of each plot – sampling days. 2. X-axes – number of divisions, Y-axes – frequencies. Black bars – observed frequencies, gray bars – frequencies from the model.

1. Smith-Martin model fits experimental data better than Gett-Hodgkin for both types of cells (lower AIC).

2. Cells with OT-1 receptors divides more intensively than with F5 (higher λ and lower T for OT-1).

Ongoing work

Methods of parameters estimation

Likelihood approach:

- allow to compute CIs immediately (using Information matrix)
- model for measurement error is tricky

References

1. Smith, J. & Martin, L. (1963) Do cells cycle? *PNAS*, **70**, 1263-1267.

2. Gett, A. & Hodgkin, P. (2000) A cellular calculus for signal integration by T cells. *Nature Immunology*, **1**, 239-244.

> Medical Research Council

Extension of mathematical model

The cell is allowed to do several cycle staying in B-state:

$$\frac{d}{dt}A_i(t) = 2(1 - q)B_{i-1}(t, \tau = \Delta) - \lambda A_i(t)$$

$$\frac{\partial B_i(t,\tau)}{\partial t} + \frac{\partial B_i(t,\tau)}{\partial \tau} = -\delta_B(\tau) \qquad \{B_i(t,\tau=0) = qB_{i-1}(t,\tau=\Delta) + \lambda A_i(t)\}$$

